marchesepartners

OVERLAND FLOW AND FLOOD ANALYSIS

FOR

3 QUARRY ROAD
 DURAL NSW 2158

Revision No	Status	Issue Date	Prepared By	Reviewed By	Approved By
A	Final	$31 / 01 / 2017$	S. Khan	L. Panagopoulos	P Sancandi

Job no. 16033

marchesepartners

1.0 TABLE OF CONTENTS
1.0 INTRODUCTION 3
2.0 STUDY AREA4
3.0 THE EXISTING SITE
4.0 APPROACH TO THE STUDY6
5.0 HYDROLOGICAL ANALYSIS7
6.0 CONCLUSION 18

ATTACHMENTS

1. UPSTREAM CATCHMENT DRAWINGS

*	Figure 1	Upstream Catchment Analysis - Existing Condition
*	Figure 2	Upstream Catchment Analysis - Proposed Condition Basement 2
*	Figure 3	Upstream Catchment Analysis - Proposed Condition Basement 1
*	Figure 4	Upstream Catchment Analysis - Proposed Condition Ground
*	Figure 5	Concept Trench Drainage Basement 2 Plan
*	Figure 6	Concept Trench Drainage Basement 1 Plan
*	Figure 7	Concept Trench Drainage Ground Floor Plan
*	Figure 8	Concept Trench Drainage Inlet Pit General Arrangement

2. FLOOD MODELLING OF CONDITIONS USING DRAINS MODELLING PROGRAM

* DRAINS Modelling 1 Existing Conditions Node Diagram
* DRAINS Modelling 2 Existing Conditions 100 Year ARI Results
* DRAINS Modelling 3 Existing Conditions 20 Year ARI Results
* DRAINS Modelling 4 Existing Conditions Input Data Sheet
* DRAINS Modelling 5 Proposed Conditions Node Diagram
* DRAINS Modelling 6 Proposed Conditions 10 Year ARI Results
* DRAINS Modelling $7 \quad$ Proposed Conditions 20 Year ARI Results
* DRAINS Modelling 8 Proposed Conditions 100 Year ARI Results
* DRAINS Modelling 9 Proposed Conditions Input Data Sheet

3. SITE SURVEY

* \quad Site Survey Photos \quad Dated $14^{\text {th }}$ December 2016

ABBREVIATIONS

AHD	Australian Height Datum	RL	Reduced Level
ARI	Annual Recurrence Interval	TWL	Top Water Level
Ha	Hectares	VD	Velocity \& Depth Product
L/s	Litres per second		

marchesepartners

2.0 INTRODUCTION

This report has been prepared by Marchese Partners Engineering (MPE) to assist relevant Stakeholders in determining the hydrology of the existing local catchment for the site 3 Quarry Road, Dural. The existing site is a grassed area with one existing single storey brick house and a retaining wall located north of the site. The proposed development is a Retirement Village with 9 buildings and landscape areas. The total site area is 2.97 ha and the site boundary is shown in the locality map in Figure 1. A small dam is present outside the western boundary of the site.

Figure 1 - Locality Plan

The site is grassed area with a single storey brick building located north of the site. It is proposed that the site will be occupied by nine (9) residential buildings with a central landscape on the ground floor.

This report defines the upstream catchment analysis from Old Northern Road and Quarry Road, towards the creek flow which includes the development site. In addition, the report also addresses the following:-

* Estimates the peak catchment discharges for the 20 and 100 Year ARI storm events for the existing catchment.
* Estimates the flood depth along the site boundary for the 10, 20 and 100 Year ARI storm events.
* Provides a recommendation for the proposed Finished Floor Level and Basement Threshold Levels which meet the requirements of the Local Government Authority, Hornsby Shire Council.

All catchment discharges and flood levels were analysed using DRAINS modelling software. DRAINS is a time area, unit hydrograph, runoff routing programme for modelling urban stormwater systems and analysing their hydrological behaviour.

marchesepartners

3.0 STUDY AREA

The catchment covers an area of 26 ha consisting of Vineys Road, Quarry Road, the proposed development, a dam, developed areas, grassed areas, and vegetated reserve. The upstream catchment is bounded by Old Northern Road, North of Vineys Road, South of Quarry Road and East of Site.

During extreme storm events it is anticipated that the catchment bounded by Old Northern Road and Quarry Road will pond into the site and spill into Trunks Creek. This creek continues into Berowra Creek which leads into the Hawkesbury River.

The total catchment and sub catchments are shown in Attachment 1-1: Existing Condition.

The elevation of the catchment varies from approximately RL 220.00 metres AHD on Old Northern Road to RL 180.00 metres AHD at the sag point, east of catchment which leads into Trunk's creek.

marchesepartners

4.0 THE EXISTING SITE

A site survey was conducted on Wednesday, $14^{\text {th }}$ December 2016. The survey shows site analysis around the catchment boundary and the site boundary as shown in Figure 2. The flood analysis catchment boundary is along Old Northern Road and includes the sub-catchments from Quarry Road and Vineys Road. The northern site boundary meets Vineys Road and the southern boundary meets Quarry Road.

The site survey images 1 to 9 (see Attachment 3) show the site grading catchment area by green arrows in the Figure 2 below. The overall site falls west to east towards the path of Trunks Creek. Old Northern Road falls towards Quarry Road. Vineys Road and Quarry Road both have a falling gradient towards east. Refer to Figure 2 below for an overall site survey plan.

The site survey shows the location of a dam near the western site boundary which has a flow path through the site and forms a gully leading to a creek downstream. There is a road sag on Vineys Road near the intersection of Vineys Lane. There is another road sag on Quarry Road east of site as shown by the Figure 2 below. Kerb entry pits were found in the site survey along Quarry Road.

Figure 2 - Site Survey Plan

marchesepartners

5.0 APPROACH TO THE STUDY

The approach taken to the study can be summarised as follows: -

* Hydrology

The catchment for the overall site includes the sag areas on Vineys Road and Quarry Road which has been modelled to determine the peak catchment discharges from the site and flood levels for a 20 and 100 Year ARI storm event using the DRAINS modelling programme.

* Hydraulics

The analysis of the overland runoff from the western boundary of the catchment area to the eastern boundary of the proposed site and the creek has been completed using the Manning's equation within DRAINS which calculates steady state discharge for a given cross-sectional area and hydraulic grade.

This calculation has been completed to verify the flood and stormwater discharge requirements of the proposed development to co-ordinate the 100 Year ARI flood level against the proposed Finish Floor Level and Basement Threshold Level for the proposed development.

marchesepartners

6.0 HYDROLOGICAL ANALYSIS

6.1 Data

The detailed survey information from Higgins Surveyors outlines the topography and existing drainage infrastructure within the catchment.

A detailed site inspection of the site was undertaken on $14^{\text {th }}$ December 2016 in sunny conditions to verify the existing drainage infrastructure and determine the extent of the catchment.

6.2 DRAINS Model

The catchment peak discharges were calculated using DRAINS modelling software. The catchment was divided into seven (7) sub-catchments as shown on drawings in Attachment 1-1.

An ILSAX model was created for the existing catchment with the following catchment characteristic factor values was created in the DRAINS model:-

$*$	Paved area depression storage	1 mm
$*$	Grassed area depression storage	5 mm
$*$	Soil Type	3
$*$	Antecedent Moisture Content (AMC)	3

The times of concentration are calculated using the Kinematic Wave Equation by the DRAINS software. Flow length, slope of the catchment, impervious and pervious percentage and roughness were input into each catchment node to determine the time of concentration for each sub-catchment.

The DRAINS model for the existing site (refer to Attachment 2-1) is shown below:

Figure 3 - Existing Site DRAINS Model

marchesepartners

The DRAINS model shows the location of node N2 which calculates the discharge of flow from the Dam when the flood enters the proposed site location at the Western Site Boundary. The node N4 shows the critical location as water leaves the proposed site, on the Eastern Site boundary. Refer to Figure 3 above for the site boundary locations. The Outlet Node shows the eastern boundary of the catchment where the water travels into the Creek. The points of interest for the existing model flood analysis are N2, N4 and Outlet to creek.

At node $\mathbf{N} 2$ on the western boundary of the proposed site, the critical duration for the 100 Year ARI storm event is the 1 hour storm with a peak discharge of $1.601 \mathrm{~m}^{3} / \mathrm{s}$, as shown by OF3 in the Node Diagram. The respective peak for the 20 Year ARI storm event is $1.04 \mathbf{~ m}^{3} / \mathrm{s}$ which occurs for the 1 hour storm.

With respect to the discharge node $\mathbf{N 4}$ on the eastern boundary of the proposed site, the critical duration for the 100 Year ARI storm event is the 1 hour storm with a peak discharge of $\mathbf{2 . 9 2} \mathbf{~ m} \mathbf{3} / \mathbf{s}$, as shown by OF5 in the Node Diagram (see Attachment 2-1). The respective peak for the 20 Year ARI storm event is 1.91 $\mathbf{m}^{3} / \mathbf{s}$ which occurs for the 1 hour storm.

The total catchment discharge is at node Outlet, 20 m east of the catchment boundary shown in Attachment 1-1. The critical duration for the 100 Year ARI storm event is the 1 hour storm with a peak discharge of 5.14 $\mathbf{m}^{3} / \mathbf{s}$, as shown by OF7 in the Node Diagram (see Attachment 2-1). The respective peak for the 20 Year ARI storm event is $3.32 \mathbf{m}^{3} / \mathrm{s}$ which occurs for the 1 hour storm.

For the detailed DRAINS model results for the existing site, refer to Attachments 2-1, 2 \& 3.

marchesepartners

6.3 Existing Catchment Discharges

The 20 and 100 Year ARI catchment peak discharges at relevant locations for various storm durations are presented below:

Table 5.3-Catchment Discharges

SUB CATCHMENT	NODE	LOCATION DESCRIPTION	STORM EVENT ARI	CATCHMENT DISCHARGE FOR STORM DURATION ($\mathrm{m}^{3} / \mathrm{s}$)		
				20 min	60 min	120 min
1	N1	North-Western catchment	20	0.15	0.19	0.17
			100	0.25	0.27	0.20
2	N2	Western catchment including Dam	20	0.36	0.50	0.47
			100	1.35	1.60	1.21
3	N53	South Western catchment	20	0.30	0.41	0.37
			100	0.49	0.64	0.49
4	N4	Site area and inflows from North, West and South catchments	20	0.82	1.04	0.91
			100	2.45	2.92	2.17
5	N3	Southern catchment	20	0.22	0.29	0.26
			100	0.36	0.42	0.32
6	N6	Eastern catchment, East of site	20	1.50	1.91	1.71
			100	0.88	1.14	0.87
7	N5	Northern catchment	20	0.54	0.73	0.65
			100	0.88	1.14	0.87
Total	Outlet	Outlet from catchment adjoining creek	20	1.77	2.51	3.32
			100	4.12	5.14	3.86

The 20 and 100 Year ARI inputs and results are presented in Attachment 2.

The Unit Hydrographs (see Figures 4 to 9) are presented for the peak catchment discharges for the Western Site boundary (N2), Eastern Site Boundary (N4) and the total catchment Outlet. These hydrographs present the overall catchment discharge for each area from the commencement of each of the storm events through to when the catchment returns to its pre storm state.

marchesepartners

Figure 4-Western Site Boundary Node N2-20 Year ARI Storm - 60 minute duration

Figure 5-Western Site Boundary Node N2-100 Year ARI Storm - 60 minute duration

marchesepartners

Figure 6-Eastern Site Boundary Node N4-20 Year ARI Storm - 60 minute duration

Figure 7-Eastern Site Boundary Node N4-100 Year ARI Storm - 60 minute duration

marchesepartners

Figure 8-Catchment Outlet - 20 Year ARI Storm - 60 minute duration

Figure 9-Catchment Outlet-100 Year ARI Storm - 60 minute duration

marchesepartners

6.4 Overland Flow Depths

The overland flow depths from the DRAINS modelling programme have been scrutinised in the following locations:-

* \quad Existing Conditions - Western Site boundary (OF3)

The total discharge applicable to the western boundary of the proposed development as analysed by DRAINS modelling for the 100 Year ARI critical storm duration of 60 minutes is $\mathbf{1 . 6} \mathbf{~ m}^{3} / \mathbf{s}$. In its existing condition, the western boundary has a batter slope down from the North and South boundaries of the catchment which falls towards the dam at the base of the batter. A headwall can be constructed to convey the flood to the eastern boundary using a pipe drainage running through the site. This concept will be further discussed in the report using a DRAINS analysis. The typical overland flow cross section is presented below.

Figure 10 - Overland Flow Cross-section OF3

marchesepartners

$\stackrel{*}{*}$ Existing Conditions - Eastern Site boundary (OF5)

The total discharge applicable to the eastern boundary of the proposed development as analysed by DRAINS modelling for the 100 Year ARI critical storm duration of 60 minutes is $\mathbf{2 . 9 2} \mathbf{~ m}^{3} / \mathbf{s}$. In its existing condition, the eastern site boundary has a batter slope down from the northern catchment and a flatter batter from the southern catchment. The overland flow path continues to fall east towards the creek. The typical overland flow cross section is presented below.

Figure 11 - Overland Flow Cross-section OF5

marchesepartners

A summary of the hydraulic analysis for the Existing Conditions 100 Year storm is presented below showing the total discharge, flow velocity and flow depth for both overland flow paths: -

Table 5.4 - Overland Flow Depths and Velocities

LOCATION	TOTAL DISCHARGE $(\mathrm{m} 3 / \mathrm{s})$	MAXIMUM FLOW VELOCITY $(\mathrm{m} / \mathrm{s})$	MAXIMUM FLOW DEPTH (mm)
West Boundary	1.6	0.624	520
East Boundary	2.92	0.663	530

From Figures 10 \& 11 and Table 5.4 above it can be seen that the Proposed Site will require treatment to convey stormwater around the proposed development to contain sufficient capacity to convey the 100 Year ARI storm event within pathway of the catchment outlet.

6.5 Proposed Condition DRAINS Analysis

A DRAINS model was created with the addition of a head wall and DN 1200 mm pipe system to carry the flood along the site and divert excess overland flow around the proposed development. Based on the analysis it is recommended that a head wall and DN 1200mm pipe system is used for the proposed development to convey flood through the site and provide the minimum 500 mm freeboard requirement in compliance with Hornsby Shire Council's conditions.

The node diagram for the proposed design is shown below in Figure 12.

Figure 12 - Proposed Site DRAINS Model

The proposed pipe and head wall HW1 system shown in Figure 12 above is applied in the DRAINS analysis. The flood is carried by the pipe system through HW1 and released to the existing system at node N4 which has an overland flow path OF4.

marchesepartners

The freeboard is achieved based on the ground floor level of RL 200m (see Figure 13 below) and the Hydraulic Grade Line Analysis of the pipe system (Figure 14) where the maximum flood level is RL 198.227 m against the proposed building. This gives a freeboard well above the minimum council requirements for a freeboard of 500 mm .

Figure 13 - Proposed Finished Ground Floor Levels

Figure 14 - Hydraulic Grade Line Analysis of Pipe System

marchesepartners

DRAINS modelling results of the proposed condition and the Upstream Catchment Analysis drawings have been included in the Attachments 1 and 2.

Based on the 100 Year ARI critical storm duration of 60 minutes the pipe has a peak flow of $1.61 \mathrm{~m}^{3} / \mathrm{s}$ with nil overland flow. The depth and velocity product is required to be assessed to determine the safety of the proposed flood diversion along the site boundary and the possible effect this could have on the total catchment discharge during peak catchment discharges.

6.6 Flood Risk Analysis

The depth velocity product of the site overland flow has been assessed at $1.61 \mathrm{~m}^{3} / \mathrm{s}$ in DRAINS with a depth of $\mathbf{4 0 0} \mathbf{~ m m}$ and velocity of $\mathbf{0 . 4 8} \mathbf{~ m} / \mathrm{s}$ for the proposed condition. When these values are plotted on Figure L1 below they return a risk category of LOW. This categorisation is considered acceptable for the eastern boundary as the VD product is safe after the proposed treatment.

The VD product for these overland flow routes are generally within acceptable limits deemed by the NSW Floodplain Management manual.

marchesepartners

7.0 CONCLUSION

The findings of the hydrological analysis for the existing upstream condition estimates a peak discharge of $1.6 \mathrm{~m}^{3} / \mathrm{s}$ leading into the site at the western site boundary for 100 Year ARI event. The peak discharge exiting away from the site is $2.92 \mathrm{~m}^{3} / \mathrm{s}$ away from the eastern boundary of the proposed site. The catchment discharges have been discussed in Section 5.2 and presented in Table 5.3.

The overland flow depths and velocities were analysed once the discharge rates were determined. It is recommended that a headwall and pipe system be constructed along the site from the western boundary to the eastern boundary of the proposed development to convey the upstream catchment discharge through the site.

The depth of flow along the western site boundary is 520 mm with a corresponding velocity of $1.60 \mathrm{~m} / \mathrm{s}$. The maximum depth of flow along the eastern site boundary is 530 mm with a corresponding velocity of $2.92 \mathrm{~m} / \mathrm{s}$. With the design of a headwall on the western boundary, the hydraulic grade line is RL 198.227 m with the proposed ground floor RL 200 m . This gives a freeboard of 1.77 m which is well above the council requirements of 0.5 m .

The pipe designed for the 100 Year ARI event flood level is of diameter 1200 mm . Figure 14 in Section 5.5 presents the Hydraulic Grade Line Analysis of the pipe where the maximum water in the pipe is RL 197.802 m , which is below the centre line of the pipe. This shows the proposed pipe has the capacity to cater for more than double the 100 Year ARI flood event level. The proposed design and ground floor levels are presented in Attachment 1 Upstream Catchment Drawings.

The velocity depth product analysis of the overflow path from the proposed design was discussed in Section 5.6. The overland flow on the eastern site boundary is found to be in the LOW risk category after the proposed design is applied. This verifies the overland flow routes of the upstream catchment is acceptable within the NSW Floodplain Management limits.

marchesepartners

ATTACHMENT 1 UPSTREAM CATCHMENT ANALYSIS DRAWINGS (Figures 1 to 8)

	REVISION DATE A 19.01 .17 B 20.01 .17 C 23.01 .17 D 25.01 .17 E 31.01 .17				marchesepartners\qquad www 2 ger Sydney • Brisbane • Canberra • Melbourne - Adelaide • Perth ABN 32604104378		CLIENT MARCHESE PARTNERS PROJET STORMWATER DRAINAGE 3 QUARRY ROAD, DURAL, NSW, 2158	3 QUARRY ROAD DURAL UPSTREAM CATCHMENT ANALYSIS PROPOSED CONDITION BASEMENT 2			
not be retained, copied or used without the express authority of MARCHESE + PARTNERS INTERNATIONAL PTY. LTD.					$\begin{aligned} & \text { SCALE } \\ & \text { A1 @ 1:1250 } \end{aligned}$			DATE Jan 23, 2017	$\begin{aligned} & \text { DRAWN } \\ & \text { CA } \end{aligned}$	CHECKED LP	
					2016-1029			DRAWING FIGURE 2		$\begin{aligned} & \text { REVVIION } \end{aligned}$	

	REVISION DATE DESCRIPTION A 19.01.17 DEVELOPMENT APPLICATION DRAFT ISSUE No.1 B 20.01 .17 DEVELOPMENT APPLICATION C 23.01 .17 DRAFT ISSUE No.2 DEVELOPMENT APPLICATION D 25.01 .17 DRAFT ISSUE No.3 DEVELOPMENT APPLICATION E 31.01 .17 FINAL REPORT DEVELOPMENT APPLICATION 			marchesepartners Marchese Partners Engineering Pty Ltd engineering \qquad Level 1, 53 Walker Street, North Sydney, NSW 2060. Australia www.marchesepartners.com.au Sydney \cdot Brisbane \cdot Canberra \cdot Melbourne \cdot Adelaide \cdot Perth Kuala Lumpur - Auckland ABN 32604104378		MARCHESE PARTNERS	$\begin{aligned} & \text { 3QUARRY ROAD DURAL } \\ & \text { UPSTREAM CATCHMENT ANALYSIS } \\ & \text { PROPOSED CONDITION BASEMENT } 1 \end{aligned}$			
为			STORMWATER DRAINAGE			$\begin{aligned} & \text { SCALE } \\ & \text { A1 @ 1:1250 } \end{aligned}$	$\begin{aligned} & \text { DATE } \\ & \text { Jan 23, } 2017 \end{aligned}$	$\begin{aligned} & \text { DRAMN } \\ & \text { CA } \end{aligned}$	CHECKED LP	
			3 QUARRY ROAD, DURAL, NSW, 2158			2016-1029	FIGURE 3		$\begin{aligned} & \text { REVIION } \\ & \text { E } \end{aligned}$	

					marchesepartners		MARCHESE PARTNERS PROJECT STORMWATER DRAINAGE 3 QUARRY ROAD, DURAL, NSW, 2158	3 QUARRY ROAD DURAL UPSTREAM CATCHMENT ANALYSIS PROPOSED CONDITION GROUND FLOOR			
			a	$\begin{aligned} & \text { SCALE } \\ & \text { A1 @ 1:1250 } \end{aligned}$				$\begin{aligned} & \text { DATE } \\ & \text { Jan 23. } 2017 \end{aligned}$		CHECKED IP	
				Job J016-1029				DRAWING FIGURE 4		$\begin{aligned} & \text { REVSIION } \\ & \hline \end{aligned}$	

				marchesepartners engineering Marchese Partners Engineering Pty Ltd Marchese Partners Engineering Pty Ltd Level 1,53 Walker Street, North Sydney, NSW 2060. Australia P +6129922 4375 F +61 299295786 E info@marchesepartners.com.au www.marchesepartners.com.au Sydney - Brisbane \cdot Canberra \cdot Melbourne \cdot Adelaide \cdot Perth Kuala Lumpur • Auckland ABN 32604104378	MARCHESE PARTNERS PROJECT STORMWATER DRAINAGE 3 QUARRY ROAD, DURAL, NSW, 2158	3 QUARRY ROAD DURAL CONCEPT TRENCH DRAINAGE INLET PIT GENERAL ARRANGEMENT			
of MARCHESE + PARTNERS INTERNATIONAL PTY. LTD. DEVELOPMENT APPLICATION			scale A1 @ 1:25			DATE Jan 23, 2017	$\begin{aligned} & \text { DRAWN } \\ & \text { CA } \end{aligned}$	CHECKED LP	
			2016-1029			RAWING FIGURE 8		$\stackrel{\text { Revsion }}{\text { E }}$	

marchesepartners

ATTACHMENT 2 FLOOD MODELLING OF CONDITIONS USING DRAINS MODELLING PROGRAM

3 Quarry Road, Dural NSW

DRAINS Model Node Diagram - Existing Conditions

3 Quarry Road, Dural NSW

100 Year Storm, Worst Case Scenario - Existing Conditions

3 Quarry Road, Dural NSW

$\underline{20}$ Year Storm, Worst Case Scenario - Existing Conditions

Job No. 2016-1029

Nam	From	To	$\begin{aligned} & \text { Travel } \\ & \text { Time } \\ & \text { (min) } \end{aligned}$	Spill Level (m)	Crest Length (m)	Weir Coeff. C	Cross Section	Safe Depth SafeDepth Safe			Bed		D/S Area	id	U/SIL		D/SIL	Length (m)
													Contributing					
								(m)	(sq.m/sec) (\%)									
OF3	N2	N4		1.1			Quarry Rd sectior	0.3	0.3		. 6	3.85	0		44	199.54	195	118
OF1	N1	N2		0.3			Quarry Rd sectior	0.3	0.3		. 6	26.48	100		12	220	199.54	77.26
OF7	N6	OUTLET		0.4			Swale with 1:4 sic	0.45	0.3		1	0.5	0		1345	180	180	20
OF5	N4	N6		2			Quarry Rd Sectior	0.3	0.3		. 6	6.05	0		53	195	180	248
OF4	N3	N4		1.2			Swale with 1:6 sic	0.15	0.1		1	8.73	0		2214	206	195	126
OF6	N5	N6		0.2			Swale with 1:4 sic	0.45	0.3		1	64.71	0		58	213	180	51
OF2	N53	N2		0.5			Quarry rd section	0.3	0.3		. 6	1.24	0		175	200	199.54	37

3 Quarry Road, Dural NSW

DRAINS Model Node Diagram - Proposed Conditions

3 Quarry Road, Dural NSW

10 Year Storm, Worst Case Scenario - Proposed Conditions

3 Quarry Road, Dural NSW

20 Year Storm, Worst Case Scenario - Proposed Conditions

3 Quarry Road, Dural NSW

100 Year Storm, Worst Case Scenario - Proposed Conditions

Project: 3 Quarry Rd, Dural NSW
ob No. 2016-1029

SUB-CATCHMENT DETAILS

PIPE COVER DETAILS
Name Type Dia (mm) Safe Cover Cover (m)
Proposed FConcrete, 1 $1200 \quad 0.6 \quad-1.29$ Unsafe

marchesepartners

ATTACHMENT 3 SITE SURVEY

The site survey was conducted on $14^{\text {th }}$ December 2016:

Image 1: Quarry Road has a road fall towards east

Image 2: Quarry Road has a road sag east of the southern site boundary
marchesepartners

Image 3: Quarry Road falls east from Old Northern Road towards the site.

Image 4: Vineys Road is a gravel road located north of the site which falls towards the eastern site boundary

marchesepartners

Image 5: Vineys Road has a road sag near the cross intersection at Vineys Lane.

Image 6: The northern site boundary has an existing single storey brick house and green areas
marchesepartners

Image 7: Vineys Road has a falling gradient towards east of site.

Image 8: At the bend of Vineys Road located north of site, the road falls towards the site.

marchesepartners

Image 9: Old Northern Road falls south towards Quarry Road

